Logic Engine

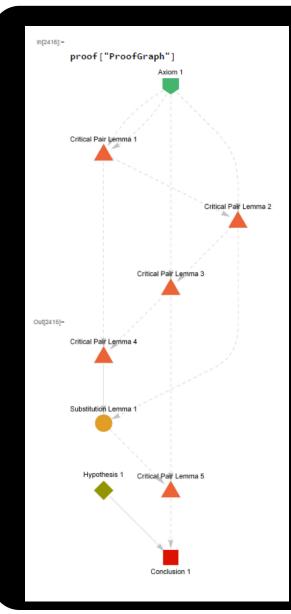
ITERATA EXPLAINS

A CRITICAL APPROACH TOWARDS THE SUBJECT

Logic Engine ightarrow the idea

The idea is the collection of a suitable preselection for specific research questions.

- The aim is to miss as little cases as possible. Not only the requested data is shown in the results, but also falsepositive results are included in the preselection. A domain-expert decides the final case-set by looking at the results.
- Desired are only the "correct" data in the case-set and only a few false-positive cases. The domain expert checks the results to present a selection of patients e.g. to present it to a physician for a study.
- Preselection from BigData (All Data Container)
- Not all data is retrieved if not needed for the research question (e.g. only data about individuals >75 yrs)

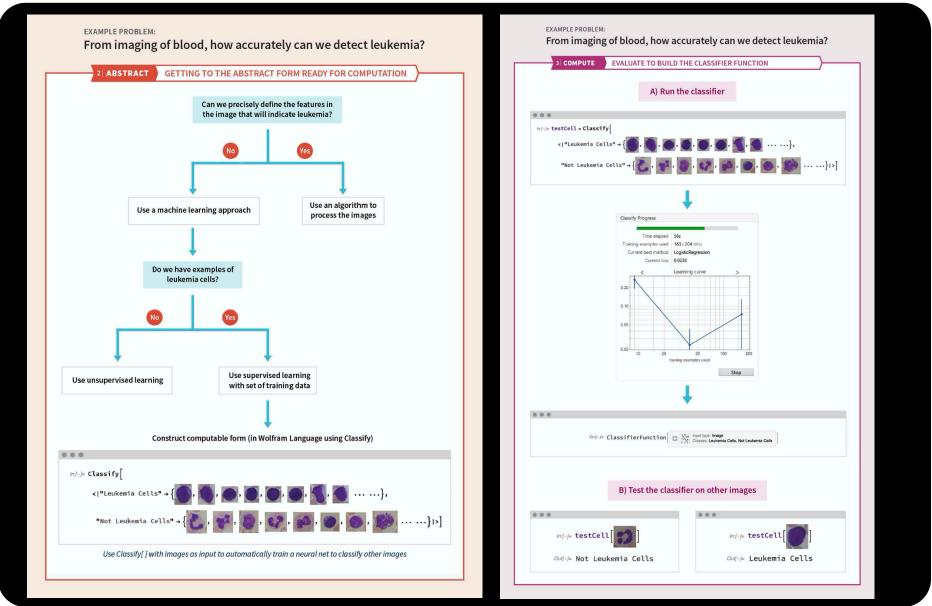

The LogicEngine supports with logical evaluation and criteria the selection of data which can be used for further analysis

- Selection criteria: patients >75yrs, patients with specific diagnoses, medication, lab values, time periods, reports
- Connection of different criteria with AND-linkage: false if statement is false
- Connection of different criteria with OR-linkage: true if statement is true
- Implication: true if second statement is false but first one is true

Logic Engine – LE

Ν	/lathe	matica		
		Statement		Proof
Axiom	1	x = m[y, m[z, m[x, m[y, z]]]		
Hypothesis	1	m[a, a] == m[b, b]		
CriticalPairLemma	1	x = m[y, m[m[z, m[x, y]], z]]	Construct	{Axiom, 1}
			Orientation	-1
			total -	
CriticalPairLemma	2	m[m[x, y], m[z, y]] = m[x, z]	Construct	{Axiom, 1}
			Orientation	-1
			9 total +	
CriticalPairLemma	3	m[x, y] = m[z, m[y, m[x, z]]]	Construct	{Axiom, 1}
			Orientation	-1
			9 total x	
CriticalPairLemma	4	m[x, m[m[x, y], m[z, y]]] = z	Construct	{CriticalPairLemma, 3}
			Orientation	-1
			9 total x	
SubstitutionLemma	1	m[x, m[x, y]] = y	Input	{CriticalPairLemma, 4}
			Position	{1, 2}
			6 total >	
CriticalPairLemma	5	m[x, x] = m[y, y]	Construct	{CriticalPairLemma, 3}
			Orientation	-1
			9 total >	
Conclusion	1	True	Input	{Hypothesis, 1}
			Position	1
			6 total +	

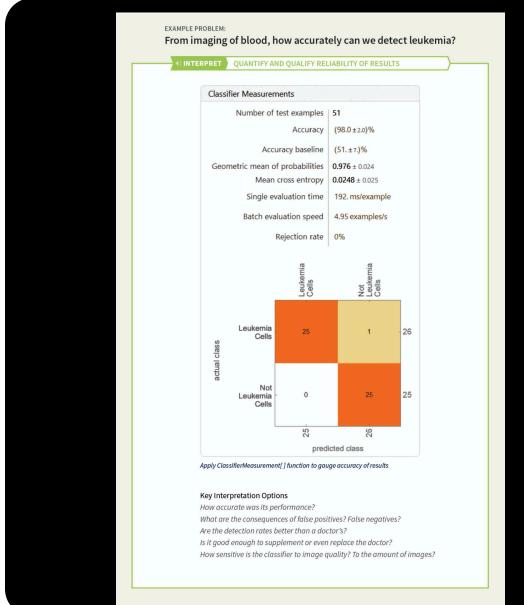
Logic Engine (LE) - Mathematica


The Maths fix

A first gold nugget

DEFINE PRECISELY DEFINING THE TERMS AND ASSUMPTIONS					
From imaging of blood	how accurately	can we detect	leukemia		
How do you get an image of	blood cells?				
Which kind of blood cells do					
Do leukemia blood cells look					
Are the images taken in a co	nsistent way?				
From imaging of blood	how accurately	can we detect	leukemia?		
What do we mean by accura	acy?				
What causes inaccuracy?					
Is false positive or false nega	ative worse?				
What are the variables to imp	proving accuracy?				
From imaging of blood	how accurately	can we detect	leukemia		
How is image detection curre	ently done?				
What is the current (human)	detection rate?				
What features are different in	n an image (colour, sha	ape, quantity, size etc	.)?		
How does image detection d	liffer from machine to de	octor?			
From imaging of blood	how accurately	can we detect	leukemia?		
Is leukemia a single instance	e of a blood cell?				
Does leukemia affect white a	and red blood cells?				
What stage of development of	of leukemia is relevant	?			
	ng leukemia from imag				

Logic Engine (LE) - Mathematica



Logic Engine (LE) - Mathematica

